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Abstract 

Introduction The accurate prediction of COVID-19 mortality risk, considering influencing factors, is crucial in guiding 
effective public policies to alleviate the strain on the healthcare system. As such, this study aimed to assess the effi-
cacy of decision tree algorithms (CART, C5.0, and CHAID) in predicting COVID-19 mortality risk and compare their 
performance with that of the logistic model.

Methods This retrospective cohort study examined 5080 cases of COVID-19 in Babol, a city in northern Iran, who 
tested positive for the virus via PCR from March 2020 to March 2022. In order to check the validity of the findings, 
the data was randomly divided into an 80% training set and a 20% testing set. The prediction models, such as Logistic 
regression models and decision tree algorithms, were trained on the 80% training data and tested on the 20% testing 
data. The accuracy of these methods for the test samples was assessed using measures like ROC curve, sensitivity, 
specificity, and AUC.

Results The findings revealed that the mortality rate for COVID-19 patients who were admitted to hospitals was 7.7%. 
Through cross validation, it was determined that the CHAID algorithm outperformed other decision tree and logistic 
regression algorithms in specificity, and precision but not sensitivity in predicting the risk of COVID-19 mortality. The 
CHAID algorithm demonstrated a specificity, precision, accuracy, and F-score of 0.98, 0.70, 0.95, and 0.52 respectively. 
All models indicated that factors such as ICU hospitalization, intubation, age, kidney disease, BUN, CRP, WBC, NLR, O2 
sat, and hemoglobin were among the factors that influenced the mortality rate of COVID-19 patients.

Conclusions The CART and C5.0 models had outperformed in sensitivity but CHAID demonstrates a better perfor-
mance compared to other decision tree algorithms in specificity, precision, accuracy and shows a slight improvement 
over the logistic regression method in predicting the risk of COVID-19 mortality in the population under study.
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Introduction
At the end of December 2019, emerging coronavirus res-
piratory disease (COVID-19) spread in Wuhan, China. 
This disease was named as COVID-19 by The World 
Health Organization (WHO) on February 11, 2020 [1]. 
According to clinical symptoms, COVID-19 is divided 
into four types: mild, moderate, severe and critical [2]. 
There is substantial evidence indicating that numerous 
individuals with COVID-19 show no symptoms, yet are 
capable of spreading the virus to other people [3]. The 
global impact of this epidemic has resulted in a concern-
ing number of deaths. There are still many aspects of this 
disease’s nature and risk factors that are not yet under-
stood [4]. A study conducted in the Caucasus region 
found that the mortality rate for patients over the age of 
80 was 18.8%, while the overall mortality rate was esti-
mated to be 5% [5, 6]. A Chinese study that observed a 
group of patients found that the presence of other ill-
nesses, advanced age, and being male were linked to 
a higher likelihood of experiencing severe disease and 
death [7]. In another study conducted in China, it was 
found that hospital death was associated with older age 
and a lower number of lymphocytes [8]. Furthermore, 
individuals over the age of 70 experienced a shorter time 
period between the onset of symptoms and death com-
pared to younger individuals [9]. Additionally, the mor-
tality rate for COVID-19 in hospitals was 28% in Spain, 
29.7% in Northern Italy, and 32% in the Caucasus region 
[10–12]. These findings suggest that patients over the 
age of 65 have a higher prevalence of underlying health 
conditions, more severe symptoms, abnormal laboratory 
results, and are at a greater risk of multiple organ failure 
and mortality [13].

Many studies have been conducted to predict COVID-
19 mortality and assess its related risk factors. These 
studies have utilized traditional models like logistic 
regression and Cox regression models [10, 11, 14–19], 
employing a limited number of predictor variables for 
causal analysis and variable selection[20]. Logistic regres-
sion has considerable limitations for analyzing structured 
questionnaire data with multiple exposures and missing 
values [20, 21]. Correlation between predictor variables 
(multiple collinearity) and a large number of predictors 
can be considered as some common challenges in tradi-
tional models [22, 23]. On the other hand, machine learn-
ing (ML) methods can use a larger number of predictors, 
requiring fewer assumptions, combining "multidimen-
sional correlations" and creating a more flexible relation-
ship between predictor variables and response variables 
[20]. In addition, ML models can create models for diag-
nosing and predicting the desired outcome [24], dis-
ease modeling [25] and predicting disease and mortality 
[26]. Despite, the presence of several algorithms of ML, 

decision tree is a popular method for classification and 
regression and its analysis is more efficient for visualiza-
tion of data in clinical decision making and it is interest 
of clinicians for purpose of classification. Decision tree 
algorithms are known as one of the most appropriate ML 
models for effective and reliable decision-making with 
high accuracy in the classification [27]. In the decision 
tree, both discrete and continuous variables can serve as 
the target independent variable. Additionally, this algo-
rithm is non-parametric and does not make any assump-
tions about the normality of the data [28]. It is used to 
select variables, evaluate the relative importance of vari-
ables, manage missing values, predict, manipulate data, 
and classify [29].

Four important criteria of sensitivity, specificity, accu-
racy and precision are used to compare the results of 
statistical models. In certain studies, both decision trees 
and logistic regression models demonstrated equal levels 
of sensitivity. However, when it comes to accuracy, speci-
ficity, and precision, the decision tree outperformed the 
logistic regression model [30]. Among the advantages of 
decision tree, their simplicity and self-explanation are 
mentionable, in other words, if they have a reasonable 
number of leaves, non-professional users and clinicians 
can understand them, and they can be converted into 
a set of rules. They can also handle both nominal and 
numeric input attributes. Decision trees have the capabil-
ity to handle data sets that contain missing values [31]. 
Decision tree and neural network models are appropri-
ate alternatives for stepwise regression models in under-
standing patterns and forecasting. By developing data 
mining approach for modeling, different types of models 
can be used to implement different modeling techniques, 
evaluate the performance of different models and choose 
the most suitable model for prediction [32]. There are dif-
ferent algorithms for tree classification while the most 
significant of them are C4.5, ID3, CART, CHAID and 
SPRINT. C4.5 is the best algorithm for small data sets 
because it provides better accuracy and efficiency than 
other algorithms [33].

According to some studies, the decision tree model 
proved higher diagnostic accuracy in comparison to the 
logistic regression model [34]. Although decision tree 
algorithms and logistic regression models may yield dif-
ferent results due to variations in the data. In this regard, 
the investigation of COVID-19 mortality through this 
algorithm has not been compared to the logistic regres-
sion model. On the other hand, the mortality predictors 
of COVID-19 are not well known clearly. Furthermore, 
classical models are often used for this purpose. There-
fore, the purpose of the present study is to predict 
the mortality of patients suffering from COVID-19 
and investigate the related factors using decision tree 
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algorithms and compare them to the logistic regression 
model.

Methods
Study design and population
This study is a historical cohort. The studied population 
were COVID-19 PCR-positive cases, who were admitted 
with clinical and paraclinical diagnosis by an infectious 
disease specialist in Rouhani Hospital in Babol, north of 
Iran during the years 2020–2021.

Sample and inclusion/exclusion criteria
The studied sample included 5080 COVID-19 PCR-
positive cases. All demographic, clinical, paraclinical 
information and their discharge status were collected in 
databases. Men and women over 18 years were eligible 
for the study. People who were admitted to the emer-
gency room less than 24 h and were discharged, as well 
as the failure to match the national patient code in the 
database link, were the conditions for exclusion from the 
study. Figure  1 shows the flowchart of the selection of 
patients to enter the study and the statistical analysis of 
the data.

Data collection
The data was gathered from two registered databases 
for hospitalized patients with COVID-19. These data-
bases include the Hospital Information System (HIS) of 
Rouhani Hospital, as well as the database of the Medi-
cal Care Monitoring Center (MCMC). These data have 
been linked using R 4.2.1 software and integration of 
the national code of patients in these two databases. 
These databases contain 5845 records of information of 
COVID-19 PCR-positive patients hospitalized in 2020–
2022, in which biomarkers such as Erythrocyte Sedimen-
tation Rate (ESR), C-reactive protein (CRP), Blood Urea 
Nitrogen (BUN), Alkaline Phosphatase (ALP), Aspar-
tate Aminotransferase (AST), Alanine Aminotransferase 
(ALT), White Blood Cell count (WBC), Neutrophil-to-
Lymphocyte Ratio (NLR), O2 saturation, Red Blood Cells 
(RBC), and hemoglobin on the first day of hospitaliza-
tion, comorbidities such as type 2 diabetes, asthma, heart 
disease, kidney disease, liver disease, HIV, nervous dis-
orders, immunodeficiency, HTN, hematologic diseases 
and history of cancer, clinical symptoms such as seizures, 
diarrhea, dizziness, fever, cough, muscular pain, res-
piratory distress, olfactory, loss of consciousness, loss of 
taste, abdominal pain, nausea, vomiting, anorexia, head-
ache, chest pain, hemiparesis, hemiplegia, dermatitis and 
body temperature, demographic variables such as age, 
gender, pregnancy, ICU hospitalization, cigarettes, drug 
use, intubation, length of hospitalization, and discharge 
status (alive/dead) of all individuals have extracted. Of 

the 5845 PCR-positive records, 5080 records were eligi-
ble for our study and statistical analysis was performed 
on them. It should be noted that the biomarkers men-
tioned in this study were collected from all patients on 
the first day of admission.

Ethical considerations
The information of all patients was collected through 
registered files of database. This study was approved 
by the ethics committee of Babol University of Medical 
Sciences, Babol, Iran with the ethics ID IR.MUBABOL.
REC.1401.071. For this study, the informed consent has 
been obtained by all hospitalized patients to include the 
data of their hospital charts to the data-based of elec-
tronic file for this research.

Imputation of missing values
If the missing values are random, multiple imputation 
can be done in different methods. Fully conditional speci-
fication (FCS) and joint modeling (JM) methods are the 
most used. In the JM method, the missing values of all 
variables are performed simultaneously using a statisti-
cal model of joint probability functions. The FCS method 
differs from JM as it does not rely on the joint distribu-
tion of variables, but rather on a collection of individual 
conditional models. In contrast, the JM method utilizes 
only one multivariate model, making it more straightfor-
ward to employ. In contrast, the FCS method, because we 
consider a separate conditional model for each variable, is 
more flexible while it has a large number of variables and 
is more suitable [35, 36]. In the present study, imputation 
was performed by the FCS method using Mice package. 
The method creates multiple imputations with replace-
ment values for multivariate missing data. The missing 
data of each variable is imputed by a separate conditional 
model. This method can handle in imputing continuous, 
binary, categorical and order categorical data.

Statistical analysis
R 4.2.1 and SPSS 26 software were used for statistical 
analysis. In the first step, bivariate analysis, descriptive 
statistical indices and frequency distribution were per-
formed on all data. In the analysis, the data were clas-
sified into two groups: death and discharge, then the 
chi-square test was used to determine the relationship 
between qualitative variables and the t-test of two inde-
pendent samples was used to determine the relationship 
between quantitative variables related to mortality of 
patients. In the second step, we have randomly divided 
the data into two categories: training and testing. In this 
research, 80% of the data were randomly assigned to the 
training group and 20% of the data were assigned to the 
testing group. We have fitted the models on the training 
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data and then in the third step on the testing data, mod-
els were evaluated and cross-validated based on accuracy, 
sensitivity, specificity, precision as well as ROC curve.

In real conditions, the data of classification model 
often encounters with an imbalanced dataset problem, 
when the number of majority class is much higher than 
the minority class. This may lead the model unable to 
learn enough from minority class. In order to overcome 

this problem, we used SMOT-Tomek technique to bal-
ance data. The method that combines oversampling by 
duplicating some randomness from minority class to 
balance the data is much popular. Because of an imbal-
anced data of mortality o COVID-19 (7.7% hospital 
mortality versus 92.3% survival), we used the SMOTE-
Tomek algorithm to balance two strata in the training 
dataset, but not for testing dataset. Ultimately, the DT 

Fig. 1 Flowchart describing patient selection
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models were developed with a balanced dataset using 
different DT algorithms and their predictive perfor-
mance was evaluated in imbalanced testing dataset.

Logistic regression model for predicting COVID‑19 mortality
For a binary event, such as mortality, logistic regression 
is the usual classical method of choice. Similar to linear 
regression, logistic regression may include only one or 
more independent variables, and multiple logistic model 
coefficients reveal the unique contribution of each vari-
able after adjusting for other variables. The probability 
of occurrence of the outcome with the inclusion of inde-
pendent variables in the logistic regression was shown by 
the following equation [37]:

If p is the probability of the outcome, i.e., being in the 
class of a binary response, in this model, it is assumed 
that logit(p) has a linear relationship with the variables 
predicting the outcome.

The reason for this logit scale transformation lies in 
the basic parameters of the logistic regression model. 
The framework of this equation includes independent 
variables (X) and beta coefficients (β) in linear regres-
sion. Indeed, a major advantage of logistic regression is 
that it retains many of the features of linear regression 
in its analysis for binary outcomes. Logistic regression 
after iteration identifies the strongest linear combination 
of independent variables that increase the probability 
of detecting the observed outcome, a process known as 
maximum likelihood estimation, and the βi coefficients 
in the model indicate the log OR. In other words, the 
odds ratio (OR) is equal to eβi [38, 39].

Decision tree
In a decision tree, each internal node, divides the sam-
ple into two or more node according to a specific discrete 
function of input attribute values. As a result, the algo-
rithm searches for the best attribute to split on. There are 
various univariate measures [29]. Some of them are based 
on impurity, while others are normalizers of these crite-
ria. Purity is measured using entropy.

Entropy
One choice to measure the degree of purity is the entropy 
of information. Entropy is a theoretical measure of the 
uncertainty in the training data that expresses how 

(1)p =
eβ0+β1x1+β2x2+···+βixi

1+ eβ0+β1x1+β2x2+···+βixi

(2)logit(p) = log
p

1− p
= β0 + β1x1 + β2x2 + · · · + βixi

random an event is. Entropy is calculated from the fol-
lowing formula [40]:

where Pi is the probability of a data sample belonging to 
the i-th class, and c is the number of classes in the target 
attribute. The higher the entropy, the higher the probabil-
ity that a sample of data belongs to a class by chance, and 
that attribute does not express much information about 
the target attribute.

Information gain
This measure uses the entropy as a criterion of impurity. 
The variable with the most information gain is selected 
for the root node, and the variable with less entropy has 
more information gain [27].

that,

where Dj is the number of samples at level j of attrib-
ute A, D is the number of training data, c is the number 
of available classes,Pi is the probability that a data sample 
belongs to the i-th class, and v is the number of domain 
members of attribute A.

Gini Index

The Gini index is a measure based on impurity. Binary 
classification is done for each variable and the variable 
with the lowest Gini is selected for the root node [40].

where D is the number of training data, c is the number 
of available classes, Pi is the probability that a sample of 
the data belongs to the i-th class, and D1,2 is the data set 
D for attribute A, which is divided into 2 parts.

(3)Entropy = −

c
∑

i=1

Pilog2Pi

(4)
InformationGain(A) = Entropy(D)− EntropyA(D)

(5)Entropy(D)=−

∑c

i=1
Pilog2Pi

(6)EntropyA(D) =
∑v

j=1

∣

∣Dj

∣

∣

|D|
Entropy

(

Dj

)

(7)Gini(A) = Gini(D)− GiniA(D)

(8)Gini(D) = 1−
∑c

i=1
P2
i

(9)GiniA(D) =
|D1|

|D|
Gini(D1)+

|D2|

|D|
Gini(D2)
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Gain Ratio
This criterion normalizes the information gain as fol-
lows [27]:

This ratio is not defined when the denominator is 
zero. Also, this ratio may be in favor of adjectives whose 
denominator is very small. It has been shown that gain 
ratio performs better in comparison to information gain, 
both in terms of accuracy and complexity [41].

Decision tree algorithms
According to recent years, several algorithms have been 
developed for diagnostic classifications with decision 
trees, among which the most important ones include the 
following:

CART 
 Classification and regression tree (CART) make 
binary tree, that is, each internal node has exactly 
two branches. Partitions are selected using the Gini 
criterion. One of the important features of CART is 
its ability to generate regression trees. Regression 
trees are the trees whose leaves predict a real number 
instead of a class. CART looks for partitions that min-
imize the prediction error. The prediction in each leaf 
is based on the weighted average of the nodes [41].
 
C5.0
 This algorithm uses gain ratio as a splitting crite-
rion. When the number of samples to be split is less 
than a certain threshold, the split stops. C5.0 can gen-
erate missing values   from a training set using the modi-
fied gain ratio criteria presented above. C5.0 algorithm 
can understand discrete or continuous values   [41].
 
CHAID
 CHAID is designed for nominal attributes. For 
each input attribute A, CHAID finds values   that have 
the least significant difference from the target attrib-
ute. The significant difference is measured by the 
p-value obtained from the statistical test. The statisti-
cal test depends on the type of target attribute. If the 
target attribute is continuous, the F test, if it is nomi-
nal, the chi-square test, and if it is ordinal, the likeli-
hood ratio test is used. Then the best input attribute 
is selected to be used to split the current node. This 
method also stops when one of the following condi-
tions is met:1) The maximum depth of the tree has 
been reached. 2) The minimum number of cases in 
a node to be a parent has been reached, so it can no 

(10)GainratioA(D) =
InformationGain(A)

EntropyA(D)

longer be split. This algorithm handles missing values   
by treating them all as a single category [41].

Evaluation of the performance of fitted models in testing 
data

Comparison of models using ROC curve
In this study, the diagnostic accuracy of decision tree 
algorithms was compared with the traditional logis-
tic regression model on the logit scale using the ROC 
curve, and the area under the curve (AUC), sensitiv-
ity (Recall), specificity, accuracy, precision and F-score 
were used. In dichotomous (positive/negative) diagnos-
tic tests, the conventional approach to test evaluation 
uses sensitivity and specificity compared to the gold 
standard status. In situations where the test results are 
reported in an ordinal or continuous scale, the sensitiv-
ity and specificity scale can be calculated in all possible 
threshold values. Hence, the sensitivity and specificity 
vary at different thresholds. A plot of sensitivity versus 
1 minus specificity is called the receiver operating char-
acteristic (ROC), and the area under the curve (AUC) 
is considered an effective measure of accuracy with 
meaningful interpretations.

This curve plays the main role in evaluating the diag-
nostic ability of tests to detect the true condition of 
people, finding the optimal cutoff and comparing two 
diagnostic methods. This predictive model is commonly 
used to estimate the risk of any adverse outcome based 
on the patient’s risk profile in medical research. There are 
various methods to determine the optimal cutoff, includ-
ing the method that maximizes the sum of sensitivity and 
specificity (or equally minimizes the sum of false positive 
and false negative errors). This criterion can be used to 
consider a cutoff as optimal. In this context, the Youden 
index is an index that maximizes the vertical distance 
between the ROC curve and the diagonal line (represent-
ing the chance level). It is defined as TP-FP and can be 
calculated as follows [42]:

While the other two indices—positive predictive value 
(PPV) and negative predictive value (NPV) may have 
interesting interpretations from a clinical standpoint, 
they are influenced by the disease’s prevalence and are 
less accurate as diagnostic tests. The area under the curve 
(AUC) summarizes the entire area of the ROC curve 
instead of relying on a specific operating point. AUC is an 
effective and comprehensive measure of both sensitivity 
and specificity, providing valuable information about the 
intrinsic validity of diagnostic tests. AUC ranges between 
0 and 1, with 1 indicating perfect discrimination between 
sick and healthy individuals. When the maximum AUC 

(11)Youden′sindex = sensitivity+ specificity− 1
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is equal to 1, it means that the test has successfully dif-
ferentiated between sick and non-sick individuals, as the 
distributions of test results for these two groups are com-
pletely distinct from each other [43].

Performance indicators of diagnostic accuracy
In this study, besides AUC, other indices were also uti-
lized. These include diagnostic accuracy, sensitivity, spec-
ificity, and F-score, all of which were determined using 
the following formulas:

that TP expresses true positive, TN true negative, FP 
false positive   and FN false negative values. The higher 
the accuracy, sensitivity, and specificity of the model, the 
better the model will be [44]. In our study, ROC curve 
using AUC, sensitivity, specificity, accuracy, precision 
and F-score was used to evaluate the models. Figure  2 

(12)Accuracy =
TP + TN

TP + TN + FP + FN

(13)Precision =
TP

TP + FP

(14)Sensitivity(Recall) =
TP

TP + FN

(15)Specificity =
TN

TN + FP

(16)F − score =
2 ∗ Precision ∗ Recall

Precision+ Recall

displays the flowchart depicting the process of statistical 
analysis for the training and testing datasets.

Results
Missing data imputation
In this study, imputation of missing data was performed 
using R 4.1.2 software from the Mice package through 
multiple imputation. To confirm that the missing values 
were randomly distributed and not biased, a comparison 
was conducted between the mortality ratio in the avail-
able data of the variables and the ratio in the missing 
data. No significant difference was found. Out of the 50 
variables included in the study, 14 variables had missing 
records. Twelve variables had missing values that were 
less than 10%, while two variables, namely body tempera-
ture and NLR, had missing values greater than 10% (18% 
and 33% respectively).

Descriptive demographic and clinical findings 
and univariate tests
In this study, among the 5734 PCR positive patients of 
COVID-19, 5080 individuals were eligible to partici-
pate in the study. Out of the total 5080 patients, 4689 
(92.3%) were discharged and 391 (7.7%) patients died. 
Among these patients, 2314 (45.6%) were men with an 
average age of 57.79 ± 16.83 years, while 2766 (54.4%) 
were women with an average age of 55.22 ± 16.06 years. 
In the male group, 199 individuals (8.6%) died, while in 
the female group 192 individuals (6.9%) died (p = 0.027). 
The average age in the group of deceased patients was 
68.56 ± 14.36 years, whereas in the discharged group it 
was 55.38 ± 16.22 years (p = 0.001). Among all the patients 

Fig. 2 Flowchart of describing the steps of analysis progress
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studied, there were 100 cases (2%) of cancer, 20 cases (4%) 
of liver diseases, 1159 cases (22.8%) of diabetes, 23 cases 
(0.5%) of hematologic diseases, 15 cases (0.3%) of HIV, 
21 cases (0.4%) of immunodeficiency, 670 cases (13.2%) 
of heart diseases, 58 cases (1.1%) of kidney diseases, 95 
cases (1.9%) of asthma, 48 cases (0.9%) of nervous disor-
ders, and 1145 cases (22.5%) of HTN. The Chi-square test 
was employed to examine the correlation between co-
morbidities and the mortality rate of COVID-19 patients. 
The findings revealed a significant association between 
cancer (p = 0.001), diabetes (p = 0.001), hematologic dis-
ease (p = 0.011), heart disease (p = 0.001), kidney disease 
(p = 0.001), neurological disorders (p = 0.001), and HTN 
(p = 0.001) with an elevated mortality rate attributed to 
COVID-19 (Table 1).

Table  2 displays the median and interquartile range 
(IQR) of two patient groups, those who deceased and 
those who were discharged. The mean of all biological 
markers, excluding ALT, in the deceased group signifi-
cantly differs when compared to the discharged group. To 
confirm this significance, we employed the U-Man Whit-
ney test.

Findings of the logistic model
To fit the models, the data was first randomly divided 
into training and testing data in the ratio of 80% to 20%, 
respectively. Then the stepwise logistic regression model 
was applied. The coefficients of the model and their 
odds ratios (95% confidence intervals) are displayed in 
Table  3. Out of 50 variables, 14 variables entered the 
final model. According to these results, the variables of 
age, ICU hospitalization, fever, loss of consciousness, 
intubation, diabetes, O2 saturation, kidney disease, ESR, 
BUN, CRP, NLR, and AST were found to be statistically 
significant. These results indicate that patients in the age 
group above 65 years have a 5.7 times higher chance of 
death compared to the age group of 18–44 years. Simi-
larly, patients in the age group of 64–45 years have a 
93% greater chance of death than the age group of 18–44 
years. Additionally, the chance of death in hospitalized 
patients in the ICU is 10.36-fold higher than in patients 
admitted to the general ward. Furthermore, patients who 
underwent intubation had a 25.1-fold higher chance of 
death. In patients with a fever, the risk of death was 41% 
lower compared to patients without a fever. Additionally, 
patients with a decreased level of consciousness had a 
2.41-fold higher risk of death. Individuals with diabetes 
and kidney diseases had a 59% and 3.95-fold higher risk 
of death, respectively.

Findings of decision tree models
The results of identifying the risk factors that are effective 
in predicting the mortality of COVID-19 patients, using 

three methods to rank the relevant attributes—Infor-
mation gain, Gain ratio, and Gini index—are shown in 
Table 4. These results indicate that adjectives with higher 
ranks have a greater impact on predicting mortality 
caused by COVID-19. The variables that were of higher 
importance in relation to the mortality of COVID-19 
patients are loss of consciousness, BUN, ALP, CRP, WBC, 
NLR, O2 sat, age, ICU hospitalization, and intubation—
these are the ten variables.

CART algorithm findings
According to Fig. 3, the results of this algorithm indicate 
that among all the variables in this model, ICU hospi-
talization, BUN, intubation, age, WBC, hemoglobin, and 
CRP are included. The algorithm was able to classify 16% 
of individuals in the death group and 84% of individuals 
in the discharge group. This algorithm revealed that 6% 
of the patients who died were those admitted to the ICU. 
Additionally, 4% of the patients who were not admitted 
to the ICU had BUN levels above 27, were not intubated, 
had WBC count below 11,000, but their hemoglobin level 
was less than 11. Furthermore, 3% of the patients who 
were not admitted to the ICU had BUN levels above 27, 
were not intubated, and had a WBC count exceeding 
11,000. Moreover, 1% of the patients who were not hos-
pitalized in the ICU had BUN levels above 27 and were 
intubated, and 1% of those same patients had BUN levels 
below 27 and were intubated. Lastly, 1% of the patients 
who were not hospitalized in the ICU had BUN levels 
below 27, were not intubated, were over 64 years old, and 
had a CRP reading over 201.

C5.0 algorithm findings
Figure 4 displays the results obtained from the C5.0 algo-
rithm. In this particular model, the variables considered 
included intubation, ICU hospitalization, BUN levels, 
kidney disease, WBC, fever, length of hospitalization, and 
CRP. Within the model, it was determined that 6.1% of 
individuals in the group died, while 93.9% were classified 
as being part of the discharge group. Moreover, it was 
further observed that 3.8% of the patients who passed 
away had been intubated, whereas 1.4% of those who did 
not require intubation had been admitted to the ICU and 
had a BUN level greater than 27.

CHAID algorithm findings
In this model, intubation, ICU hospitalization, BUN, age, 
and kidney diseases were the most important variables 
included. Figure  5 shows that 5.7% of individuals were 
classified in the death group, while 94.3% were classified 
in the discharge group. Out of the deceased patients, 80 
were those who were intubated and hospitalized in the 
ICU. Additionally, 61 individuals were intubated but not 
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Table 1 Demographic and comorbidity of study participants according to COVID-19 mortality

Characteristic Mortality n (%) Survived n (%) Total n (%) p‑value ( χ2)

Age (year) 0.001

 18- 44 24 (1.8) 1301 (98.2) 1325 (26.1)

 45- 64 111 (5.3) 1968 (94.7) 2079 (40.9)

 65 ≤ 256 (15.3) 1420 (84.7) 1676 (33.0)

Gender 0.027

 Male 199 (8.6) 2115 (91.4) 2314 (45.6)

 Female 192 (6.9) 2574 (93.1) 2766 (54.4)

Cigarette user 0.163

 Yes (11.5) 11 (88.5) 85 96 (1.9)

 No 380 (7.6) 4604 (92.4) 4984 (98.1)

Drug user 0.094

 Yes 13 (11.9) 96 (88.1) 109 (2.1)

 No 378 (7.6.) 4593 (92.4) 4971 (97.9)

 Cancer 0.001

 Yes 17 (17.0) 83 (83.0) 100 (2.0)

 No 374 (7.5) 4606 (92.5) 4980 (98.0)

Liver disease 0.699

 Yes 2 (10.0) 18 (90.0) 20 (0.4)

 No 389 (7.7) 4671 (92.3) 5060 (99.6)

Type 2 diabetes 0.001

 Yes 148 (12.8) 1011 (87.2) 1159 (22.8)

 No 243 (6.2) 3678 (93.8) 3921 (77.2)

Hematologic disease 0.011

 Yes 5 (21.7) 18 (78.3) 23 (0.5)

 No 386 (7.6) 4671 (92.4) 5057 (99.5)

HIV 0.632

 Yes 0 (0.0) 15 (100.0) 15 (0.3)

 No 391 (7.7) 4674 (92.3) 5065 (99.7)

Immunodeficiency 0.216

 Yes 3 (14.3) 18 (85.7) 21 (0.4)

 No 388 (92.3) 4671 (92.3) 5059 (99.6)

Heart disease 0.001

 Yes 87 (13.0) 583 (87.0) 670 (13.2)

 No 304 (6.9) 4106 (4106) 4410 (86.8)

Kidney disease 0.001

 Yes 19 (32.8) 39 (67.2) 58 (1.1)

 No 372 (7.4) 4650 (92.6) 5022 (98.9)

Asthma 0.904

 Yes 7 (7.4) 88 (92.6) 95 (1.9)

 No 384 (7.7) 4601 (92.3) 4985 (98.1)

Chronic Nervous Disorders 0.001

 Yes 11 (22.9) 33 (77.1) 48 (0.9)

 No 380 (7.6) 4652 (92.4) 5032 (99.1)

HTN 0.001

 Yes 135 (11.8) 1010 (88.2) 1145 (22.5)

 No 256 (6.5) 3679 (93.5) 3935 (77.5)
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hospitalized in the ICU. Furthermore, 70 of the deceased 
patients were not intubated, but they were hospitalized in 
the ICU and had a BUN greater than 24. Lastly, 14 indi-
viduals were not intubated, not hospitalized in the ICU, 
had a BUN greater than 24, and had kidney disease.

Comparison of predictive performance of fitted models 
in testing data
In this section, we cross-validate the performance of the 
fitted model predictors using 20% of the testing data, 
and the results are presented in Table  5. To assess the 
predictive power of the algorithms, we consider sensi-
tivity as a measure. The CART and C5.0 algorithms per-
formed the best, achieving sensitivities of 0.77 and 0.75, 
respectively. On the other hand, the logistic model and 
CHAID performed better in terms of specificity, obtain-
ing a specificity of 0.98. When it comes to precision, the 
CHAID model performed the best, with a precision of 

0.70. In terms of diagnostic accuracy, both the CHAID 
and C5.0 models achieved a score of 0.95. The F-score 
indicated that the C5.0 algorithm and CHAID had simi-
lar performance, outperforming other models. As for the 
area under the ROC curve, both the logistic and CART 
models displayed similar performance, surpassing other 
models.

In this study, the logistic regression model, the C5.0, 
and CART algorithms have higher specificity but CART 
has a better performance in sensitivity. However, C5.0 
has much ability in predicting outcome (precision) com-
pared to CART and CHAID algorithms. The accuracy 
of all models was >=0.90. So, the question now is which 
model performs better. Since the desired outcome in this 
study is mortality, it is important to accurately diagnose 
the death rate, which is better in the CART model com-
pared to other models. However, other indicators in these 
models should also be considered. Therefore, although 

Table 2 The median (IQR) of biomarkers according to COVID-19 mortality

Biomarkers Mortality Median (IQR) Survived Median (IQR) Total p-value (χ^2)

NLR (5.10) 5.66 (3.17) 3.78 Median (IQR) 0.001

Blood urea nitrogen (22) 28 (9) 17 (3.10) 3.9 0.001

(mg/dl) (25) 29 (25)  29 (10) 17 0.99

Alanine transferase (39)  52 (26) 39 (25) 29 0.001

(U/L) (122) 195 (81.5) 165 (26) 40 0.001

Aspartate aminotransferase (45) 40 (35)  31 (84.75) 167 0.001

(U/L) (62) 78 (56)  49 (35) 32 0.001

Table 3 The regression coefficients and odds ratio (OR) of the stepwise logistic regression in COVID-19 mortality

Independent variable B SE (B) OR (95% CI) p-value

Age (year)

18- 44 - - -

45- 64 0.73 0.32 (1.07–3.67) 1.93 0.022

65 ≤ 1.82 0.31 (3.25–10.56) 5.7 0.001

ICU hospitalization
(yes vs no)

2.38 0.20 (6.96–15.45) 10.36 0.001

Fever (yes vs no) 0.52- 0.16 (0.43–0.81) 0.59 0.001

Loss of consciousness (yes vs no) 0.88 0.37 (1.15–4.83) 2.41 0.016

Intubation (yes vs no) 3.18 0.24 (15.11–39.59) 24.2 0.001

Type 2 diabetes (yes vs no) 0.46 0.17 (1.14–2.21) 1.59 0.004

O2 sat(mg) (> 93% vs < 93%) 0.84- 0.16 (0.32–0.58) 0.43 0.001

Kidney disease (yes vs no) 1.37 0.43 (1.65–9.01) 3.95 0.001

ESR (mm/h) 0.007- 0.003 (0.986–0.998) 0.992 0.013

BUN (mg/dl) 0.027 0.004 (1.02–1.036) 1.028 0.001

CRP (mg/L) 0.007 0.001 (1.0049–1.0095) 1.007 0.001

NLR 0.033 0.016 (1.001–1.067) 1.034 0.05

Hemoglobin (g/dL) 0.072- 0.038 (0.86–1.002) 0.93 0.05

AST (U/L) 0.006 0.002 (1.003–1.009) 1.006 0.001
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Table 4 Ranking from low to high importance of each attribute in predicting COVID-19 mortality using decision tree indices

Attributes Information gain Gini index Gain ratio Average ranks

Chest pain 4 2 2 2.67

Olfactory 3 1 4 2.67

Abdominal pain 5.5 3.5 5.5 4.83

Asthma 5.5 3.5 5.5 4.83

Nausea 9 7 3 6.33

Anorexia 10 8 1 6.33

Seizure 7 5 11 7.67

Liver disease 8 6 13 9

Vomiting 11 9 10 10

Muscular pain 12 12 7 10.33

Headache 13 11 9 11

Cough 15 14 8 12.33

Dizziness 17 16 15 16

Body temperature 1.5 34 16 17.17

Immunodeficiency 14 15 24 17.67

Drug 19 17 18 18

Cigarettes 20 19 19 19.33

Diarrhea 22 20 17 19.67

HIV 18 10 35 21

Gender 29 23 12 21.33

Hemiparesis 16 18 30 21.33

ALT 1.5 40 23 21.5

Fever 30 27 14 23.67

Pregnancy 21 13 37 23.67

Cancer 27 25 28 26.67

HTN 31 29 21 27

Respiratory distress 33 30 20 27.67

Loss of taste 26 21 39 28.67

Hematologic disease 23 22 42 29

Heart disease 32 31 26 29.67

Hemiplegia 24 24 44 30.67

ESR 34 38 22 31.33

Type 2 diabetes 36 32 27 31.67

Nervous disorder 28 26 41 31.67

Dermatitis 25 28 48 33.67

Hemoglobin 37 41 25 34.33

AST 41 42 29 37.33

RBC 39 43 31 37.67

Kidney disease 35 33 47 38.33

Length of hospitalization 42 36 40 39.33

Loss of consciousness 38 35 46 39.67

BUN 48 35 38 40.33

ALP 40 48 34 40.67

CRP 46 44 33 41

WBC 45 46 32 41

NLR 43 47 36 42

O2 sat 44 37 45 42

Age 47 39 43 43

ICU hospitalization 49 49 49 49

Intubation 50 50 50 50
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these models have higher sensitivity, they should not be 
ignored because the sensitivity and specificity cannot 
both be high at the same time. Additionally, based on 
the AUC, the CART model is slightly different from the 
logistic model. The ROC curve was used to compare the 
prediction performance of the models, where the higher 
the levels under the curve, the higher the AUC and the 
better the model performs. The ROC curve for all three 
decision tree models and the logistic regression model is 
shown in Fig. 6. In terms of AUC, the logistic models and 
CART models performed better and had almost similar 
performance.

Comparison of performance of DT predictive model using 
balanced dataset
We applied the SMOTE-Tomek algorithm to develop the 
DT models with a balanced training dataset. Then, the 
performance of predictive models was evaluated in both 
training and testing data sets. The results showed that the 
CART model has sensitivity, specificity, and accuracy of 
0.99, 0.46, and 0.74 in training balanced dataset, while 
these indexes were 0.98, 0.51, and 0.55 respectively in the 
testing datasets. The fitted C5.0 model had the sensitivity, 
specificity, and accuracy of 0.93, 0.93, and 0.93  in a bal-
anced training data set, but these indexes were 0.70, 0.85, 
and 0.84 respectively in testing datasets. Finally, the fitted 
CAHID model showed sensitivity, specificity, accuracy 
of 0.49, 0.98, and 0.94 respectively in a balanced training 

dataset. However, these measures were 0.41, 0.98, and 
0.94 in the testing dataset. Thus, the sensitivity of DT 
models was decreased in the testing dataset.

Discussion
In this study, we identified the factors that affect COVID-
19 mortality using a logistic regression model and deci-
sion tree algorithms. Understanding the factors that 
influence mortality is essential for clinicians and health 
policymakers when monitoring hospitalized COVID-19 
patients. According to the results of this study, among 
these factors, we can mention ICU hospitalization, intu-
bation, age, kidney diseases, hemoglobin level, and bio-
logical markers such as NLR, WBC, O2 sat, CRP, and 
BUN. These factors were found to have a significant rela-
tionship with the mortality rate. The predictors of mor-
tality caused by COVID-19 have been widely reported 
in traditional classical models in different regions. These 
models include the findings of biological and radiologi-
cal markers, co-morbidities, and demographic variables. 
Numerous studies that predicted the effective factors 
in COVID-19 mortality mainly used classical statistical 
methods, which is somewhat consistent with the results 
of our study.

In the present study, ICU hospitalization is identified 
as a key factor influencing the mortality rate among 
patients with COVID-19. This variable has consist-
ently been included in all four proposed models of this 

Fig. 3 CART algorithm for predictors of mortality
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study, highlighting its significance in increasing the risk 
of mortality. This escalation in risk could potentially be 
attributed to the severity of patients’ conditions within 
the ICU. This variable had the strongest impact on 
mortality in numerous studies. For instance, in a study 
conducted by Dawood Adham in Ardabil, Iran [37], it 
was found to have a significant effect. Another study 
by Karaca-Mandic in the United States demonstrated 
that a 1% increase in ICU bed utilization is linked to 
a 2.84-fold increase in COVID-19 mortality [45]. 
Among other significant variables in our three models, 
we can mention old age and CRP. In a study by Nasser 

Malekpour in Tehran, Iran, which examined 396 sur-
viving patients and 63 deceased patients, it was shown 
that the likelihood of death in the hospital is influenced 
by age and CRP levels upon admission [38]. A pro-
spective study was also conducted in Iran by Ruhollah 
Alizadeh. Three hundred and nineteen patients with 
COVID-19 were followed up after two months to assess 
their health status. Fever, CRP, and age were identified 
as the most significant symptoms of COVID-19 infec-
tion [39]. These findings align with our study. Another 
study conducted in Birjand, Iran, by Qodsieh Azarkar 
revealed significant differences in clinical parameters 

Fig. 4 C5.0 algorithm for predictors of mortality
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and comorbidities between the death and discharge 
groups. Parameters such as O2 saturation, lympho-
cyte and platelet count, hemoglobin level, CRP, and 
liver and kidney function displayed statistical differ-
ences. These differences hold meaningful importance. 
The results indicate that comorbidities, the number of 
lymphocytes and CRP, may increase the risk of death 
in hospitalized patients with COVID-19. Patients with 

lower lymphocyte counts in their hemogram and high 
levels of CRP, as well as those with comorbidities, 
are more likely to face a higher risk of death [40]. In 
another study carried out by Javanian in Babol, Iran, it 
was found that older age, length of hospital stays, ICU 
stay, kidney failure, and lymphocyte count were asso-
ciated with mortality [41]. This aligns with our find-
ings. In a study conducted by Fabiana Tezza in Italy, 

Fig. 5 CHAID algorithm for predictors of mortality

Table 5 Comparing the performance of logistic regression and decision tree algorithms to predict the COVID-19 mortality in 
testing dataset with model fitted to imbalanced data

Models Confusion matrix Sensitivity
(Recall)

Specificity Precision Accuracy F-score AUC 

Predicted Actual  Mortality Survived

Mortality TP FP

Survived FN TN

Logistic 26
42

13
935

0.38 0.98 0.66 0.94 0.48 0.93

CART 51
17

89
859

0.75 0.91 0.36 0.90 0.49 0.92

C5.0 28
8

40
940

0.41 0.99 0.78 0.95 0.41 0.78

CHAID 28
40

12
936

0.41 0.98 0.70 0.95 0.52 0.87
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the identification of predictors for COVID-19 mortality 
revealed that age and hemoglobin were among the most 
significant predictors of in-hospital mortality [46]. 
Because the mechanism of kidney dysfunction caused 
by COVID-19 is still unknown, it has been shown 
that SARS-CoV-2 plays a pathogenic role in COVID-
19 patients by binding to the angiotensin-converting 
enzyme (ACE) 2 receptor [47]. A study conducted by 
Bertsimas in America identified increasing age, O2 sat-
uration, increased CRP, and BUN as the most impor-
tant predictors of COVID-19 mortality [4]. Similarly, 
a study conducted by Maryam Kabotari in Iran found 
that age and O2 saturation were significantly related 
to mortality caused by COVID-19 in hospital settings 
[48]. In a systematic review and meta-analysis con-
ducted by Zhao Zheng et al. in China, which included 
3027 patients with COVID-19, it was found that age 
over 65 years and smoking were identified as risk fac-
tors for disease progression [3]. Furthermore, a study 
carried out by Fabiana Tezza in Italy examined 341 
patients with an average age of 74 years, and deter-
mined that age, along with vital signs and laboratory 
parameters such as lymphocyte count and hemoglobin, 
were the most significant predictors of in-hospital mor-
tality. These findings align with our own study.

According to our recent study, we discovered that 
the mortality rate among COVID-19 patients is 7.7%, 

which is very similar to the findings reported by Dawood 
Adham in his study that indicated a mortality rate of 
8.5% [37]. However, another systematic review and meta-
analysis conducted by John J Y Zhang in China reported 
a lower mortality rate of 4.3% [44]. This variance could 
possibly be attributed to variations in the level of special-
ized care, treatment protocol, and the criteria for includ-
ing patients in each respective study. Additionally, in a 
study conducted in Birjand, Iran by Qudsieh Azarkar, the 
mortality rate was approximately 17.4% [40], potentially 
attributed to the limited sample size of 360 participants 
and specific inclusion criteria. Furthermore, this study 
also indicated a hospitalization rate of 6.2% in intensive 
care units (ICUs). In contrast, a systematic review and 
meta-analysis study conducted by John JV Zhang found 
a higher ICU admission rate of 10.9% [44]. The difference 
in rates could be explained by variations in the severity of 
the disease or the adequacy of ICU beds in the healthcare 
system of China.

Our study has revealed that decision tree algorithms 
can effectively serve as an alternative in developing mor-
tality prediction models for COVID-19 patients. Similar 
to Mostafa Shanbezadeh’s study in Iran, the use of the 
Gini index facilitated an investigation into the criteria for 
diagnosing COVID-19. The findings demonstrated that 
the J-48 algorithm displayed the highest performance, 
with an accuracy of 0.85, in detecting COVID-19 [49]. 

Fig. 6 Comparison of logistic model and decision tree algorithms performance in terms of ROC curve
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In our study, we found that both the C5.0 and J-48 algo-
rithms performed exceptionally well, displaying a high 
accuracy rate of 0.95. These results indicate that, despite 
having fewer variables and assumptions compared to the 
logistic regression model, the decision tree model shows 
a remarkable predictive accuracy. By utilizing a reduced 
number of variables, the decision tree algorithm can 
achieve comparable levels of accuracy and sensitivity as 
logistic regression, while also demonstrating a higher 
level of specificity. In the current study, the input vari-
ables in the models derived from three decision tree algo-
rithms are highly similar. The variables used in the CART 
and CHAID models are identical to those in the logis-
tic model. Likewise, the variables employed in the C5.0 
model are all present in the logistic model, except for the 
length of hospitalization. To compare the models’ perfor-
mance, the ROC curve was utilized, specifically exam-
ining the AUC. A larger AUC, indicating a broader area 
under the curve, is indicative of superior performance.

Machine learning (ML) models are being increas-
ingly employed in the arena of diagnosing and predict-
ing health-related outcomes. Among these models, DT, 
Random Forests, and neural networks have a significant 
legacy. DT has the advantage of automatically identify-
ing predictor variables, making it easier for clinicians to 
interpret results and identify non-linear relationships. 
This stands in contrast to the multiple logistic regres-
sion model, which depends on assumptions of linearity 
on the scale. The logistic regression model and the col-
linearity of variables are potential challenges to the accu-
racy and validity of the results. The results of this study 
demonstrate that even though there are defaults in the 
logit model, the DT method has nearly identical diagnos-
tic accuracy with the added benefits of easy interpreta-
tion of results and sequential analysis of variables. In 
fact, certain parameters may even outperform the logit 
model. Our findings highlight the efficiency of DT analy-
sis, a method that relies on straightforward algorithmic 
rules, for predicting mortality outcomes, as opposed to 
the logit regression model, which focuses on establish-
ing the relationship between independent variables and 
outcomes.

The factors affecting the death of COVID-19 patients 
were often discussed in classical models and only a few 
studies focused on predicting mortality. This current 
study has several advantages. Firstly, it utilized a large 
dataset with over 5 thousand records of hospitalized 
COVID-19 patients from the hospital and health data-
base in the northern region of Iran. Secondly, the study 
analyzed high-dimensional data, including demographic, 
clinical, and paraclinical variables. Thirdly, the statistical 
analysis involved multiple algorithms and a simultaneous 
logistic model in educational data. Fourthly, the models 

created were tested and cross-validated. The study aimed 
to predict the death of COVID-19 patients and the find-
ings were derived from decision tree modeling, identify-
ing the death rate and influential factors. Based on the 
study’s findings, it is expected that by controlling these 
predictors of mortality, the costs associated with this 
widespread disease on families and the healthcare system 
could be minimized.

The results indicate that the fitted DT models, have 
relatively good performance in diagnostic accuracies 
both in training and testing imbalanced data sets for 
predicting COVID-19 mortality. This high performance 
may be explained by a big dataset of over 5000 records 
in our study. Despite the presence of imbalanced data 
with respect to mortality versus survival. Our results 
show no evidence of overfitting in unbalanced train-
ing data sets, because of the presence of rather closed 
performance of diagnostic accuracies in training and 
testing datasets. In our findings with imbalanced train-
ing data of big data sets and suitable pruning, the fitted 
model of C5.0 and CART algorithms had outperformed 
in sensitivity while CHAID had better performance in 
specificity and precision than other algorithms. How-
ever, when the DT models were developed on balanced 
training datasets, the performance of sensitivity of all 
algorithms decreased surprisingly in testing datasets 
but not in training datasets. This may imply the syn-
thetic and oversampling used to deal with imbalanced 
data of minority class have create the possibility of over-
fitting and generation of synthetic case that might not 
be accurate representative the minority class. Moreover, 
oversampling in SMOTE-Tomek method may introduce 
sampling errors which can lead to bias and also increase 
the risk of overfitting, where the model learns the noise 
in datasets [50].

In this study, we unfortunately faced limitations 
in terms of time and costs, which prevented us from 
gathering robust data from multiple centers for model 
training. As a result, data was collected solely from 
one hospital, and since it was retrospective, there were 
several variables with missing data. To overcome this, 
advanced statistical methods were employed, and future 
longitudinal studies will aim to minimize the occurrence 
of missing data. However, the clinical significance of 
lactate dehydrogenase variation in COVID-19 patients 
is noteworthy. Unfortunately, it has been excluded from 
the study due to the fact that it was only measured in 
3% of the patients. The study was conducted between 
March 2020 and March 2022. However, the COVID-
19 vaccination rollout began in Iran in January 2021. 
Therefore, it is plausible that some of the participants in 
our survey might have been vaccinated, but we did not 
have access to their vaccination information. Moreover, 
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although the model built on tree classification in our 
analysis has been validated independently by testing 
datasets of study regions, testing the model with exter-
nal datasets would strengthen the generalizability of 
results. However, we did not access external datasets of 
other countries or other regions of Iran. This may rather 
limit the generalizability of predictive models of tree-
based classification.

Conclusion
The findings from this study reveal that factors includ-
ing ICU hospitalization, intubation, age, kidney diseases, 
O2 sat, WBC, BUN, CRP, NLR, and hemoglobin play 
a significant role in determining the mortality rate of 
COVID-19 patients. To establish the reliability of these 
results and assess the role of Decision Tree (DT) analysis 
in the diagnostic process, it is essential to conduct fur-
ther longitudinal studies involving multiple hospital cent-
ers. Specialists in statistics who focus on prediction and 
classification should carefully consider the potential of 
decision tree models, which can be equally or even more 
effective than traditional regression methods in identify-
ing predictive patterns without making as many assump-
tions. Furthermore, the authors recommend the future 
research directions, such as exploring ensemble meth-
ods or deep learning model for predicting COVID-19 
mortality.
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